Deformation of the Hopf algebra of plane posets
نویسنده
چکیده
We describe and study a four parameters deformation of the two products and the coproduct of the Hopf algebra of plane posets. We obtain a family of braided Hopf algebras, which are generically self-dual. We also prove that in a particular case (when the second parameter goes to zero and the first and third parameters are equal), this deformation is isomorphic, as a self-dual braided Hopf algebra, to a deformation of the Hopf algebra of free quasi-symmetric functions FQSym.
منابع مشابه
Plane posets, special posets, and permutations
We study the self-dual Hopf algebra HSP of special posets introduced by Malvenuto and Reutenauer and the Hopf algebra morphism from HSP to the Hopf algebra of free quasi-symmetric functions FQSym given by linear extensions. In particular, we construct two Hopf subalgebras both isomorphic to FQSym; the first one is based on plane posets, the second one on heap-ordered forests. An explicit isomor...
متن کاملBruhat order on plane posets and applications
A plane poset is a finite set with two partial orders, satisfying a certain incompatibility condition. The set PP of isoclasses of plane posets owns two products, and an infinitesimal Hopf algebra structure is defined on the vector space HPP generated by PP , using the notion of biideals of plane posets. We here define a partial order on PP , making it isomorphic to the set of partitions with t...
متن کاملOn Posets and Hopf Algebras
We generalize the notion of the rank-generating function of a graded poset. Namely, by enumerating different chains in a poset, we can assign a quasi-symmetric function to the poset. This map is a Hopf algebra homomorphism between the reduced incidence Hopf algebra of posets and the Hopf algebra of quasi-symmetric functions. This work implies that the zeta polynomial of a poset may be viewed in...
متن کاملHopf Algebras and Edge-labeled Posets
Given a nite graded poset with labeled Hasse diagram, we construct a quasi-symmetric generating function for chains whose labels have xed descents. This is a common generalization of a generating function for the ag f-vector de-ned by Ehrenborg and of a symmetric function associated to certain edge-labeled posets which arose in the theory of Schubert polynomials. We show this construction gives...
متن کاملHopf Algebras and Edge-labeled Posets
Given a finite graded poset with labeled Hasse diagram, we construct a quasi-symmetric generating function for chains whose labels have fixed descents. This is a common generalization of a generating function for the flag f -vector defined by Ehrenborg and of a symmetric function associated to certain edge-labeled posets which arose in the theory of Schubert polynomials. We show this constructi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 38 شماره
صفحات -
تاریخ انتشار 2014